Search results for "Topological order"

showing 10 items of 27 documents

A large-energy-gap oxide topological insulator based on the superconductor BaBiO3

2013

Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant.…

Band gapTopological degeneracyAb initioOxideGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials Sciencechemistry.chemical_compoundCondensed Matter::Superconductivity0103 physical sciencesTopological orderPhysics::Chemical Physics010306 general physicsCondensed Matter::Quantum GasesPhysicsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityDopingMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologychemistryTopological insulatorCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Physics
researchProduct

Prediction of Weak Topological Insulators in Layered Semiconductors

2012

We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsbusiness.industryBand gapMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyPrimitive cell02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsSemiconductorTopological insulator0103 physical sciencesTopological orderCondensed Matter::Strongly Correlated ElectronsCharge transfer insulators010306 general physics0210 nano-technologybusinessSurface statesStacking faultPhysical Review Letters
researchProduct

Structural, vibrational and electrical study of compressed BiTeBr

2016

Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobilit…

DiffractionElectron mobilityPhase transitionMaterials sciencepolovodičeletadlovznikchemistry.chemical_elementMetoda rozšířené vlnasemiconductors02 engineering and technology01 natural sciencesBismuthpressureCondensed Matter::Materials Sciencesymbols.namesakeinitio molekulové dynamikyAb initio quantum chemistry methodsinitio molecular-dynamicsbasis-set0103 physical sciencesemergenceZákladem-setTopological orderphase010306 general physicstlakCondensed matter physicsbusiness.industrytransitionpřechodfáze021001 nanoscience & nanotechnologytotal-energy calculationsSemiconductorchemistryFISICA APLICADAaugmented-wave methodsymbolsplaneCelkové energetické výpočty0210 nano-technologybusinessRaman scattering
researchProduct

Quantum Phases and Spin Liquid Properties of 1T-TaS2

2021

Quantum materials exhibiting magnetic frustration are connected to diverse phenomena including high-Tc superconductivity, topological order and quantum spin liquids (QSLs). A QSL is a quantum phase (QP) related to a quantum-entangled fluid-like state of matter. Previous experiments on QSL candidate materials are usually interpreted in terms of a single QP, although theories indicate that many distinct QPs are closely competing in typical frustrated spin models. Here we report on combined temperature-dependent muon spin relaxation and specific heat measurements for the triangular-lattice QSL candidate material 1T-TaS2 that provide evidence for competing QPs. The measured properties are assig…

FOS: Physical sciences02 engineering and technologyQuantum phases01 natural sciencesCondensed Matter - Strongly Correlated ElectronsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTopological orderAtomic physics. Constitution and properties of matter010306 general physicsSpin (physics)MaterialsQuantumMaterials of engineering and construction. Mechanics of materialsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsQuàntums Teoria delsMaterials Science (cond-mat.mtrl-sci)Muon spin spectroscopy021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsState of matterTA401-492Quantum spin liquid0210 nano-technologyCharge density waveQC170-197
researchProduct

Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

2017

Nature Communications 8, 13940 (2017). doi:10.1038/ncomms13940

Floquet theoryFloquet theorytopologyBIOCHEMISTRY AND MOLECULAR BIOLOGYBand gapScienceFOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyWeyl semimetal02 engineering and technologysuperconductors01 natural sciencesArticleSettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular Biologyfermi arcsultrahigh mobility0103 physical sciencessurfacemagnetoresistanceTopological ordersuperconductores010306 general physicstaasPhysicstopological insulatorCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsPHYSICS AND ASTRONOMYgrapheneQ500Materials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologySemimetalCHEMISTRY MULTIDISCIPLINARYTopological insulatorFemtosecondcd3as2State of matterCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technologydiscoveryNature Communications
researchProduct

Unveiling signatures of topological phases in open kitaev chains and ladders

2019

In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurement…

General Chemical EngineeringNanowireMajorana fermionsFOS: Physical sciences02 engineering and technologycondensed_matter_physicsTopology01 natural sciencesArticlelcsh:ChemistrySuperconductivity (cond-mat.supr-con)Open quantum systemPosition (vector)Quantum state0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Topological orderGeneral Materials Science010306 general physicsquantum transportPhase diagramPhysicsSuperconductivityMajorana fermionMesoscopic physicsopen topological systemCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - Superconductivity021001 nanoscience & nanotechnologyopen topological systemslcsh:QD1-999Majorana fermions; open topological systems; quantum transport0210 nano-technology
researchProduct

Signatures of topological phase transitions in Josephson current-phase discontinuities

2016

Topological superconductors differ from topologically trivial ones for the presence of topologically protected zero-energy modes. To date, experimental evidence of topological superconductivity in nanostructures has been mainly obtained by measuring the zero-bias conductance peak via tunneling spectroscopy. Here, we propose an alternative and complementary experimental recipe to detect topological phase transitions in these systems. We show in fact that, for a finite-sized system with broken time-reversal symmetry, discontinuities in the Josephson current-phase relation correspond to the presence of zero-energy modes and to a change in the fermion parity of the groundstate. Such discontinui…

Phase transitionFOS: Physical sciences02 engineering and technologyClassification of discontinuitiesTopology01 natural sciencesSymmetry protected topological orderSuperconductivity (cond-mat.supr-con)Quantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectronicOptical and Magnetic Materials010306 general physicsQuantum tunnellingTopological quantum numberElectronic Optical and Magnetic Materials; Condensed Matter PhysicsSuperconductivityPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivityFermionCondensed Matter Physics021001 nanoscience & nanotechnology0210 nano-technologyGround state
researchProduct

Self-duality and periodicity at finite filling fraction

2005

We investigate a model of interacting charged particles in two space dimensions, with manifest invariance under duality and periodicity under flux attachment. This model, introduced by Fradkin and Kivelson (1996 Nucl. Phys. B 474 543), shares many qualitative features of real quantum Hall systems. We extend this model to the case of finite filling fraction, i.e., to physical systems without particle–hole symmetry and without time-reversal invariance. We derive the transformation laws for the the average currents and prove that they have an SL (2, Z) symmetry. We can then calculate the filling factors at the modular fixed points and further explore the topological order of the model by const…

Physical systemGeneral Physics and AstronomyDuality (optimization)Statistical and Nonlinear PhysicsGeometryFixed pointQuantum Hall effectSpace (mathematics)Symmetry (physics)Transformation (function)Topological orderMathematical PhysicsMathematicsMathematical physicsJournal of Physics A: Mathematical and General
researchProduct

Topological Insulators in Ternary Compounds with a Honeycomb Lattice

2010

One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This so-called Dirac cone is closely related to the surface states of the recently discovered topological insulators. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. In contrast to graphene with two Dirac cones at K and K' points, these material…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHoneycomb structureLattice (order)Topological insulatorTopological orderDirect and indirect band gapsTernary operationSurface states
researchProduct

Topological insulators in filled skutterudites

2011

We propose new topological insulators in cerium filled skutterudite (FS) compounds based on ab initio calculations. We find that two compounds CeOs4As12 and CeOs4Sb12 are zero gap materials with band inversion between Os-d and Ce-f orbitals, which are thus parent compounds of two and three-dimensional topological insulators just like bulk HgTe. At low temperature, both compounds become topological Kondo insulators, which are Kondo insulators in the bulk, but have robust Dirac surface states on the boundary. This new family of topological insulators has two advantages compared to previous ones. First, they can have good proximity effect with other superconducting FS compounds to realize Maja…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsKondo insulatorLattice (group)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFermionCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeDirac fermionTopological insulatorProximity effect (superconductivity)symbolsTopological orderCondensed Matter::Strongly Correlated ElectronsCharge transfer insulatorsPhysical Review B
researchProduct